QPLL - a Quartz Crystal Based PLL for Jitter Filtering Applications in LHC

Paulo Moreira and Alessandro Marchioro

CERN-EP/MIC, Geneva Switzerland

9th Workshop on Electronics for LHC Experiments 29 September - 3 October 2003

Outline

- Introduction
- QPLL overview
- QPLL operation
 - Circuit principles
 - Radiation tolerance
- QPLL Quartz Crystal
- Experimental results:
 - Jitter
 - Data transmission tests
- Future

Introduction

- LHC experiments use Gbit/s communication links
- Links run synchronous with the LHC master clock
- TTC is the system used to broadcast timing information
- TTCrx it the receiving end of the TTC system
- TTCrx jitter is not compatible with Gbit/s serializer requirements
- A VCXO based Phase Locked-Loop (the QPLL) was developed to overcome this problem
- The QPLL can be used as Jitter filter in the TTC system
- The QPLL can act as a clock reference for:
 - Gbit/s Serializers and Deserializers
 - Time-to-Digital Converters
 - Analogue-to-Digital Converters

QPLL Overview

- Phase detector:
 - Bang-bang type
 - Only early/late decision
- VCXO
 - Two control ports
 - Bang-bang control
 - Continuous control

- Control loop:
 - Two control branches
 - Bang-bang: phase and frequency control
 - Integral: average frequency control
 - Almost independent optimization of K_{bb} and K_{int}

- Ideally the crystal should be loaded by a "short circuit":
 - The oscillation frequency will be the resonance frequency of the crystal: f_m
- In practice the oscillator presents a loading capacitance $C_{circuit}$ to the crystal:
 - The oscillation frequency is then higher than f_m :
 - Crystal manufacturing takes into account the loading capacitance

- The oscillation frequency can be controlled by changing the loading capacitance:
- The amount of control is very reduced:
 - C_m is orders of magnitude smaller than $C_{circuit}$
 - $C_m: 5.9 \, \text{fF}$
 - $C_{circuit}$: 3.4 pF to 5.5 pF
- <u>Good</u>: intrinsically low bandwidth PLL
- <u>Bad</u>: small locking range

- VCXO:
 - Pierce Oscillator
 - Two frequency control capacitors
- Three frequency control mechanisms:
 - Bang-bang control:
 - switched capacitor
 - Integral control:
 - voltage controlled n-well capacitor
 - Frequency centering:
 - four binary weighted switched capacitors. (Not under the PLL loop control)

- Lock acquisition, two phases:
 - Frequency centering
 - Standard frequency pull-in and phase lock cycle
- Frequency centering:
 - After start-up, reset or unlocked operation detected
 - Frequency-only detector used
- Frequency centering operations:
 - 1. The bang-bang loop is disabled
 - 2. The VCXO control voltage forced to its mid range value
 - 3. A binary search is made to decide on the value of the frequency centering capacitor
 - 4. Once the value found, control is passed to the PLL control loop
- The frequency centering operation can be disabled:
 - In this case the user has to program the correct capacitor value
 - Useful to prevent unwanted calibration cycles
 - Or to use the QPLL as a simple crystal oscillator

Radiation Tolerance

- Total dose:
 - 0.25 μ m CMOS process
 - Enclosed NMOS
 - Guard rings
- Single Event Upsets:
 - Majority voting circuits
 - Confirm before acting
 - When in doubt, take the action with less impact for the system

Quartz Crystal

- For operation on the x1, x2 and x 4 mode, CERN will provide a crystal with each QPLL
- A contract has been signed with Micro Crystal for the production of 10K parts
- A first series of 100 parts has already been delivered for prototype evaluation
- Frequency tolerance taking into account:
 - LHC frequency: ± 12 ppm
 - Crystal: ± 31 ppm
 - Frequency tolerance
 - Drift over temperature range
 - Aging
 - QPLL circuit contribution: ± 7 ppm
 - Total: ± 50 ppm
- QPLL locking range:
 - Full range: ± 72 ppm

- Inverted mesa AT-Cut
- Resonance mode:
 - Fundamental
- Load Frequency:
 - 160.314744 MHz
- Load Capacitance:
 - 4.48 pF (typical)
- Frequency Tolerance at 25°C:
 - _____- -18 to 18 ppm
- Drift over Temperature Range:
 - -10 to 10 ppm
- Aging first year:
 - ± 3 ppm
- Motional Capacitance:
 - 4.2 fF (min)
- Static Capacitance:
 - 2.8 pF (typical)
- Drive Level:
 - 100 μW (max)
- Operating Temperature Range: - 0 to 60 °C
- Series Resistance at 25 °C:
 - 35 Ohm (maximum)
- Package type:
 - SMD ceramic CC1F-T1A
 - 8 mm × 3.7 mm × 1.75 mm

Jitter

Saved: 27 MAY 2003 15:29:35

Saved: 27 MAY 2003 15:43:59

Paulo.Moreira@cern.ch

Data Transmission Tests

Past and (Near) Future

- A second version of the QPLL was developed
 - Expanded lock range: +50 %
 - Includes internal supply regulator
 - The new chip is functionally and pinout compatible
 - Two of the pins have now double functionality:
 - If "internal control": Everything as before
 - If "external control":
 - nReset \rightarrow frequencySelect<5>
 - autoRestart \rightarrow frequencySelect<4>
- Schedule:
 - Design submitted for fabrication: July
 - Wafers received from the foundry: September
 - Wafers shipped for dicing: September
 - Chips shipped for packaging: September
 - Packaged chips received: Any time in October!
- The engineering run reticle contains:
 - 4 new QPLL Total: 540 chips
 - 2 old QPLL Total: 270 chips (safety measure)

Summary

- TTCrx clock jitter:
 - too high to serve as a clock reference for high speed data links
- A PLL based on a VXCO was developed to act as a Jitter filter in the TTC system
- The QPLL was produced in prototype quantities
 - The circuit is fully functional
 - Data transmission tests prove that it can be used as a clock reference for high speed serializers
 - Can also be used as a clock source for high resolution TDCs and ADCs
 - The QPLL can also be used "standalone" as a clock generator
- A new design with increased locking range will be tested soon
- October 2003 devices will be available:
 - QPLL1: 270 pieces
 - QPLL2: 540 pieces