QPLL Status - December 2004

Paulo Moreira

People

- S. Baron¹
- H. Furtado¹,
- R. Haeni²,
- A. Marchioro¹,
- P. Moreira¹,
- J. Parsons³,
- S. dalla Piazza²
- and
- S. Simion³
- CERN,
 Micro Crystal
- 3) Nevis

Outline

- QPLL jitter problem
 - Crystal activity dips
 - Power reduction network
 - Circuit
 - Layout
- Irradiation tests
- TTCrq

QPLL Jitter Problem

- August 2004:
 - Stefan Simion found that at some frequencies an temperatures the QPLL jitter was largely exceeding the typical values.
- September 2004
 - Both Nevis and CERN worked quite hard at the problem but all the hypotheses were either rejected or difficult to confirm.
- October 2004
 - With the help of Micro Crystal it was possible to confirm that the problem was due to activity dips in the crystal due to excessive power driving.
- October/November 2004
 - During this period work was done to find a simple and effective way of reducing the power delivered to the crystal.

Activity dips

- Activity dips are due to vibration modes that are mechanically coupled to the fundamental resonant mode.
 - The fundamental mode is a thickness shear motion while modes causing activity dips are not.
 - These modes can have frequencies quite close to the fundamental mode and are very dependent on temperature.
 - They can thus interfere with the fundamental mode distorting the electrical characteristics of the crystal near the resonance.

Power reduction network

Power reduction network

Power reduction network - Layout

Irradiation Tests

- Irradiation tests made in Boston by:
 - Sefan Simion and John Parsons
- Proton beam:
 - Energy: 160 MeV
 - Fluence: 2.3 to 2.5 10¹³ p/cm²
- QPLL3
- Quartz crystals:
 - Micro Crystal
 - Conner Winfield
- (Accelerated aging tests being done at CERN)

Irradiation

Paulo Moreira

Irradiation

TTCrq

- New TTCrq on the drawing board
 - Introduction of the power network
 - Pin J2 39 will become a +2.5 V power input
 - For cards working in a radiation hard environment that can not use the internal 2.5 V regulator
 - Optional O Ω resistor for 100% compatibility with the previous version
 - Optional 100 Ω internal terminations for the LVDS signals
- Fabrication schedule:
 - Through CERN: mid January
 - Discussing with an external manufacturer to speedup things